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Gromov-Wasserstein as a Metric
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! need for a fast approximate solver.

! “bending-invariant” objects recognition.

! QAP: NP-hard in general.
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Entropic Gromov Wasserstein

Projected mirror descent:
Def. Entropic Gromov-Wasserstein

Projected mirror descent:Def.

Prop. for ⌧ = 1/", the iteration reads

repeat:

until convergence.

initialization:

return T

func T = GW(C, C̄, p, q)
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Abstract

Many shape and image processing tools rely on computation of cor-
respondences between geometric domains. Efficient methods that
stably extract “soft” matches in the presence of diverse geometric
structures have proven to be valuable for shape retrieval and transfer
of labels or semantic information. With these applications in mind,
we present an algorithm for probabilistic correspondence that opti-
mizes an entropy-regularized Gromov-Wasserstein (GW) objective.
Built upon recent developments in numerical optimal transportation,
our algorithm is compact, provably convergent, and applicable to
any geometric domain expressible as a metric measure matrix. We
provide comprehensive experiments illustrating the convergence
and applicability of our algorithm to a variety of graphics tasks.
Furthermore, we expand entropic GW correspondence to a frame-
work for other matching problems, incorporating partial distance
matrices, user guidance, shape exploration, symmetry detection, and
joint analysis of more than two domains. These applications expand
the scope of entropic GW correspondence to major shape analysis
problems and are stable to distortion and noise.

Keywords: Gromov-Wasserstein, matching, entropy

Concepts: •Computing methodologies→ Shape analysis;

1 Introduction

A basic component of the geometry processing toolbox is a tool for
mapping or correspondence, the problem of finding which points on
a target domain correspond to points on a source. Many variations
of this problem have been considered in the graphics literature, e.g.
with some sparse correspondences provided by the user. Regardless,
the basic task of geometric correspondence facilitates the transfer of
properties and edits from one shape to another.

The primary factor that distinguishes correspondences algorithms
is the choice of objective functions. Different choices of objective
functions express contrasting notions of what correspondences are
“desirable.” Classical theorems from differential geometry and most
modern algorithms consider local distortion and produce maps that
take tangent planes to tangent planes with as little stretch as possible;
slightly larger neighborhoods might be taken into account by e.g.
aligning heat kernels. These approaches are justified by classical
differential geometry when the matched domains satisfy conditions
like near-isometry or near-conformality, but when these conditions
are violated these algorithms suffer from having to patch together
local elastic terms into a single global map.
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Figure 1: Entropic GW can find correspondences between a source
surface (left) and a surface with similar structure, a surface with
shared semantic structure, a noisy 3D point cloud, an icon, and a
hand drawing. Each fuzzy map was computed using the same code.

In this paper, we propose a new correspondence algorithm that
minimizes distortion of long- and short-range distances alike. We
study an entropically-regularized version of the Gromov-Wasserstein
(GW) mapping objective function from [Mémoli 2011] measuring
the distortion of geodesic distances. The optimizer is a probabilistic
matching expressed as a “fuzzy” correspondence matrix in the style
of [Kim et al. 2012; Solomon et al. 2012]; we control sharpness of
the correspondence via the weight of the entropic regularizer.

Although [Mémoli 2011] and subsequent work identified the possi-
bility of using GW distances for geometric correspondence, computa-
tional challenges hampered their practical application. To overcome
these challenges, we build upon recent methods for regularized op-
timal transportation introduced in [Benamou et al. 2015; Solomon
et al. 2015]. While optimal transportation is a fundamentally differ-
ent optimization problem from regularized GW computation (linear
versus quadratic matching), the core of our method relies upon
solving a sequence of regularized optimal transport problems.

Our remarkably compact algorithm (see Algorithm 1) exhibits global
convergence, i.e., it provably reaches a local minimum of the regu-
larized GW objective function regardless of the initial guess. Our
algorithm can be applied to any domain expressible as a metric mea-
sure space (see §2). Concretely, only distance matrices are required
as input, and hence the method can be applied to many classes of
domains including meshes, point clouds, graphs, and even more
abstract structures.

A major advantage of our framework is its extensibility. In addition
to the conventional correspondence problem, we apply our method
to organizing shape collections and show how to find correspon-
dences given user guidance or incomplete pairwise distances. We
also provide algorithms to extract multiple maps in the presence of
symmetry and to compute consistent maps within a collection.

Contributions. We present a fuzzy mapping algorithm minimiz-
ing the Gromov-Wasserstein (GW) objective with entropic regular-
ization. In summary, we make the following contributions:

• discretization of the entropically-regularized GW objective
suitable for domains in graphics and geometry processing;

• a simple-to-implement algorithm for minimizing this objective
that relies only upon scalable low-level linear algebra;

• a convergence proof for the iterative optimization algorithm;
• comprehensive experiments establishing reliability, efficiency,
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Figure 15: MDS embedding of four classes from SHREC dataset.
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Figure 16: Recovery of galloping horse sequence.

0 is the base shape) as a feature vector for shape i. We reproduce
the result presented in the work of Rustamov et al., recovering
the circular structure of meshes from a galloping horse animation
sequence (Figure 16). Unlike Rustamov et al., however, our method
does not require ground truth maps between shapes as input.

5.2 Supervised Matching

An important feature of a matching tool is the ability to incorporate
user input, e.g. ground truth matches of points or regions. In the
GWα framework, one way to enforce these constraints is to provide
a stencil S specifying a sparsity pattern for the map Γ. Incorporating
constraints in this form is as simple as replacing K ← K ⊗ S in
Algorithm 1 before Sinkhorn projection.

Figure 17 illustrates a prototype “user session” in interactive map
design. Initially, we optimize with high regularization and no con-
straints, yielding a superposition of symmetric maps. The user is
prompted with the highest-entropy row (leftmost target; source point
marked in black) and inputs a ground truth match, marked in black
in the remaining target images. The map is recomputed with a lower
regularizer and the ground truth match in S, disambiguating the
rotational symmetry (center target). GWα is still unable to disam-
biguate the top-bottom reflectional symmetry, so the user further
constrains the upper half of the source to map to the upper half of the
target by using § to zero out undesired matches. With this additional
change and after decreasing regularization, the algorithm produces a
near point-to-point map (rightmost target). Each map update takes a
few seconds.

5.3 Weighted Distance Matrix

In some scenarios, only distances in a particular range are relevant
to matching, e.g. keeping certain points close to one another while
pushing others far apart. In other contexts, distance values may be
known with varying confidence.

More generally, suppose in addition to distance matrices D0 ∈

Figure 18: Mapping a set of 185 images onto a two shapes while
preserving color similarity. (Images from Flickr public domain collection.)
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version of the GWα matching problem (3) that prioritizes maps
preserving distances corresponding to large W values:

min
Γ∈M

∑

ijkℓ

(D0ij−Dkℓ)
2
ΓikΓjℓW0ijWjℓµ0iµ0jµkµℓ. (8)

For instance, (W0,W) might contain confidence values expressing
the quality of the entries of (D0,D). Or, W0,W could take values
in {ε, 1} reducing the weight of distances that are unknown or do
not need to be preserved by Γ.

Following the same simplifications as §3.1, we can optimize this
objective by minimizing ⟨Γ,ΛW(Γ)⟩, where

ΛW(Γ) :=
1
2
[D∧2

0 ⊗W0][[µ0]]Γ[[µ]]W

− [D0 ⊗W0][[µ0]]Γ[[µ]][D⊗W]

+
1
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W0[[µ0]]Γ[[µ]][D

∧2 ⊗W]

The remainder of the derivation in §3.1 remains unchanged, and
hence we can optimize (8) using a small modification of Algorithm 1
corresponding to the new update rule
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In practice, giving W exactly zero entries can cause numerical
problems during Sinkhorn rescaling, so we bound it below by a
small ε > 0.

Figure 18 illustrates an application of this technique (α = 3×
10−3, η=2.5×10−2). Here, we extend the image example from §4
to map images onto shapes on a shared grid. We take Wij =1 to be
one if i and j are in the same connected component and Wij =0
otherwise; this objective does not enforce color continuity between
the connected components. As a result, the components exhibit
different (but still smooth) color variations, e.g. the clusters of blue
images on the two components are distant from each other. Note the
optimization decides which image appears in which cluster.

5.4 Symmetry Detection

[Pauly 2015] recently posed the question of whether optimal trans-
portation can be used for symmetry analysis. We outline one strategy

0 0.02 0.04
0

0.02

0

0.02

Teddies
Humans
Four-legged
Armadillo

Figure 15: MDS embedding of four classes from SHREC dataset.

0 0.5 1
0

0.5

1

1

5

10

15

20

25

30

35

40

45

PCA 1

P
C

A
2

Figure 16: Recovery of galloping horse sequence.

0 is the base shape) as a feature vector for shape i. We reproduce
the result presented in the work of Rustamov et al., recovering
the circular structure of meshes from a galloping horse animation
sequence (Figure 16). Unlike Rustamov et al., however, our method
does not require ground truth maps between shapes as input.

5.2 Supervised Matching

An important feature of a matching tool is the ability to incorporate
user input, e.g. ground truth matches of points or regions. In the
GWα framework, one way to enforce these constraints is to provide
a stencil S specifying a sparsity pattern for the map Γ. Incorporating
constraints in this form is as simple as replacing K ← K ⊗ S in
Algorithm 1 before Sinkhorn projection.

Figure 17 illustrates a prototype “user session” in interactive map
design. Initially, we optimize with high regularization and no con-
straints, yielding a superposition of symmetric maps. The user is
prompted with the highest-entropy row (leftmost target; source point
marked in black) and inputs a ground truth match, marked in black
in the remaining target images. The map is recomputed with a lower
regularizer and the ground truth match in S, disambiguating the
rotational symmetry (center target). GWα is still unable to disam-
biguate the top-bottom reflectional symmetry, so the user further
constrains the upper half of the source to map to the upper half of the
target by using § to zero out undesired matches. With this additional
change and after decreasing regularization, the algorithm produces a
near point-to-point map (rightmost target). Each map update takes a
few seconds.

5.3 Weighted Distance Matrix

In some scenarios, only distances in a particular range are relevant
to matching, e.g. keeping certain points close to one another while
pushing others far apart. In other contexts, distance values may be
known with varying confidence.

More generally, suppose in addition to distance matrices D0 ∈

Figure 18: Mapping a set of 185 images onto a two shapes while
preserving color similarity. (Images from Flickr public domain collection.)

R
n0×n0

+ and D ∈ R
n×n
+ we are given symmetric weight matrices

W0 ∈ R
n0×n0

+ and W ∈ R
n×n
+ . We could solve a weighted

version of the GWα matching problem (3) that prioritizes maps
preserving distances corresponding to large W values:

min
Γ∈M

∑

ijkℓ

(D0ij−Dkℓ)
2
ΓikΓjℓW0ijWjℓµ0iµ0jµkµℓ. (8)

For instance, (W0,W) might contain confidence values expressing
the quality of the entries of (D0,D). Or, W0,W could take values
in {ε, 1} reducing the weight of distances that are unknown or do
not need to be preserved by Γ.

Following the same simplifications as §3.1, we can optimize this
objective by minimizing ⟨Γ,ΛW(Γ)⟩, where

ΛW(Γ) :=
1
2
[D∧2

0 ⊗W0][[µ0]]Γ[[µ]]W

− [D0 ⊗W0][[µ0]]Γ[[µ]][D⊗W]

+
1
2
W0[[µ0]]Γ[[µ]][D

∧2 ⊗W]

The remainder of the derivation in §3.1 remains unchanged, and
hence we can optimize (8) using a small modification of Algorithm 1
corresponding to the new update rule

Γ
(k+1)
W
←argmin

Γ∈M

KL

(

Γ

∣

∣

∣

∣

∣

[

exp

(

−
ΛW(Γ(k)

W
)

α

)]∧η

⊗
[

Γ
(k)
W

]∧(1−η)
)

.

In practice, giving W exactly zero entries can cause numerical
problems during Sinkhorn rescaling, so we bound it below by a
small ε > 0.

Figure 18 illustrates an application of this technique (α = 3×
10−3, η=2.5×10−2). Here, we extend the image example from §4
to map images onto shapes on a shared grid. We take Wij =1 to be
one if i and j are in the same connected component and Wij =0
otherwise; this objective does not enforce color continuity between
the connected components. As a result, the components exhibit
different (but still smooth) color variations, e.g. the clusters of blue
images on the two components are distant from each other. Note the
optimization decides which image appears in which cluster.

5.4 Symmetry Detection

[Pauly 2015] recently posed the question of whether optimal trans-
portation can be used for symmetry analysis. We outline one strategy

Figure 1: The database that has been used, divided into classes.

3 Participants

Each participant was asked to submit up to 3 runs of his/her algorithm, in the form of 400 × 400
dissimilarity matrices; each run could be for example the result of a different setting of parameters
or the use of a different similarity metric. We remind that the entry (i, j) of a dissimilarity matrix
represent the distance between models i and j.

This track saw 5 groups of participants:

1. Ceyhun Burak Akgül, Francis Schmitt, Bülent Sankur and Yücel Yemez, who sent 3 matrices;

2. Mohamed Chaouch and Anne Verroust-Blondet with 2 matrices;

3. Thibault Napoléon, Tomasz Adamek, Francis Schmitt and Noel E. O’Connor with 3 matrices;

4. Petros Daras and Athanasios Mademlis sent 1 matrix;

5. Tony Tung and Francis Schmitt with 3 matrices.

For details on the algorithms and the different runs proposed by the participants, the reader is
referred to their papers, included at the end of this report.

4 Performance measures

As observed in section 2, each query has its own set of 20 relevant items. We evaluated all the methods
using the standard measures briefly described below.
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Figure 16: Recovery of galloping horse sequence.

0 is the base shape) as a feature vector for shape i. We reproduce
the result presented in the work of Rustamov et al., recovering
the circular structure of meshes from a galloping horse animation
sequence (Figure 16). Unlike Rustamov et al., however, our method
does not require ground truth maps between shapes as input.

5.2 Supervised Matching

An important feature of a matching tool is the ability to incorporate
user input, e.g. ground truth matches of points or regions. In the
GWα framework, one way to enforce these constraints is to provide
a stencil S specifying a sparsity pattern for the map Γ. Incorporating
constraints in this form is as simple as replacing K ← K ⊗ S in
Algorithm 1 before Sinkhorn projection.

Figure 17 illustrates a prototype “user session” in interactive map
design. Initially, we optimize with high regularization and no con-
straints, yielding a superposition of symmetric maps. The user is
prompted with the highest-entropy row (leftmost target; source point
marked in black) and inputs a ground truth match, marked in black
in the remaining target images. The map is recomputed with a lower
regularizer and the ground truth match in S, disambiguating the
rotational symmetry (center target). GWα is still unable to disam-
biguate the top-bottom reflectional symmetry, so the user further
constrains the upper half of the source to map to the upper half of the
target by using § to zero out undesired matches. With this additional
change and after decreasing regularization, the algorithm produces a
near point-to-point map (rightmost target). Each map update takes a
few seconds.

5.3 Weighted Distance Matrix

In some scenarios, only distances in a particular range are relevant
to matching, e.g. keeping certain points close to one another while
pushing others far apart. In other contexts, distance values may be
known with varying confidence.

More generally, suppose in addition to distance matrices D0 ∈
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For instance, (W0,W) might contain confidence values expressing
the quality of the entries of (D0,D). Or, W0,W could take values
in {ε, 1} reducing the weight of distances that are unknown or do
not need to be preserved by Γ.
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In practice, giving W exactly zero entries can cause numerical
problems during Sinkhorn rescaling, so we bound it below by a
small ε > 0.

Figure 18 illustrates an application of this technique (α = 3×
10−3, η=2.5×10−2). Here, we extend the image example from §4
to map images onto shapes on a shared grid. We take Wij =1 to be
one if i and j are in the same connected component and Wij =0
otherwise; this objective does not enforce color continuity between
the connected components. As a result, the components exhibit
different (but still smooth) color variations, e.g. the clusters of blue
images on the two components are distant from each other. Note the
optimization decides which image appears in which cluster.

5.4 Symmetry Detection

[Pauly 2015] recently posed the question of whether optimal trans-
portation can be used for symmetry analysis. We outline one strategy
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Applications of GW: Quantum Chemistry

Regression problem:

! f by solving DFT approximation is too costly.

GW-interpolation: [Rupp et al 2012]
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Gromov-Wasserstein Geodesics

Def. Gromov-Wasserstein Geodesic

! X ⇥ Y is not practical for most applications.
(need to fix the size of the geodesic embedding space)

! Extension to more than 2 input spaces?

Prop.

[Sturm 2012]



Gromov-Wasserstein Barycenters

Input:

�1

�2

�3

Def. GW Barycenters

repeat:

until convergence.

initialization: C  C0

for s = 1 to S do

return C

Alternating minimization:

On Ts


