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Implicit Euler Stepping
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Implicit vs. Explicit Stepping



Wasserstein Gradient Flows
Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998]

Formal limit ⌧ ! 0: @tµ = div (µr(f 0(µ)))

(advection)f(µ) =
R
wdµ @tµ = div(µrw)

(heat di↵usion)f(µ) =
R
log(dµdx )dµ @tµ = �µ

(non-linear di↵usion)f(µ) = 1
m�1

R
(dµdx )

m�1dµ @tµ = �µm

Evolution µtEvolution µtrw rw

µt+1 = ProxW⌧f (µt)
def.
= argmin

µ2M+(X)
W 2

2 (µt, µ) + ⌧f(µ)



Felix Otto

min
f

E(f) @f

@t
= div(fr(E 0(f)))

@f

@t
= �E 0(f)

E(f) = �
R
f(log(f)� 1)E(f) =

R
||rf ||2

E(f) =
R
f fp�1�p

p�1

Euclidean L2 flow Optimal transport flow

@f

@t
= �fHeat equation:

Porous medium:
@f

@t
= �fp

David KinderlehrerRichard Jordan

p = 1

p = 2

p = 4



Linear vs Non-linear Diffusions
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Eulerian vs. Lagrangian Discretization



µ̂n µ

n ! +1

µ̂n = 1
n

Pn
i=1 �xi

Ĥ(µ̂n)
def.
=

P
i log(minj 6=i ||xi � xj ||)

�
R
log(dµdx (x))dµ(x)

H(µ)
def.
=n ! +1

Lagrangian Discretization of Entropy



time

d⇢t
dt

= �⇢t +r(V ⇢t)

min
⇢

E(⇢)
def.
=

Z
V (x)⇢(x)dx+

Z
⇢(x) log(⇢(x))dx

V
(x
)
=

||x
||2

Wasserstein flow of E:

Lagrangian Discretization of Gradient Flows
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Gradient Flows: Crowd Motion
µt+1

def.
= argminµ W

↵
↵ (µt, µ) + ⌧f(µ)

Proposition: Prox 1
" f
(µ) = min(e�"wµ,)

 = ||µt=0||1  = 2||µt=0||1  = 4||µt=0||1

Congestion-inducing function:
f(µ) = ◆[0,](µ) + hw, µi
[Maury, Roudne↵-Chupin, Santambrogio 2010]

rw



Crowd Motion on a Surface

Potential cos(w)
 = ||µt=0||1  = 6||µt=0||1

X = triangulated mesh.



Gradient Flows: Crowd Motion with Obstacles

Potential cos(w) = ||µt=0||1  = 2||µt=0||1  = 4||µt=0||1  = 6||µt=0||1

X = sub-domain of R2.



Crowd of Sheeps

https://www.youtube.com/watch?v=tDQw21ntR64
Tim Whittaker (New Zealand)
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Unbalanced Transport

! “Dynamic” Benamou-Brenier formulation.
[Liereo, Mielke, Savaré 2015] [Kondratyev, Monsaingeon, Vorotnikov, 2015]

[Liereo, Mielke, Savaré 2015] [Chizat, Schmitzer, Peyré, Vialard 2015]

Proposition:
then WF 1/2

c is a distance on M+(X).

[Chizat, Schmitzer, P, Vialard 2015]

(⇠, µ) 2 M+(X)2, KL(⇠|µ) def.
=

R
X log

⇣
d⇠
dµ

⌘
dµ+

R
X(dµ� d⇠)

If c(x, y) = � log(cos(min(d(x, y), ⇡
2 ))

WFc(µ, ⌫)
def.
= min

⇡
hc, ⇡i+ �KL(P1]⇡|µ) + �KL(P2]⇡|⌫)

[Liereo, Mielke, Savaré 2015]

Balanced OT Unbalanced OT
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Generalized Entropic Regularization
Primal:

! Only matrix-vector multiplications. ! Highly parallelizable.

! On regular grids: only convolutions! Linear time iterations.

min
⇡

hdp, ⇡i+ f1(P1]⇡) + f2(P2]⇡) + "KL(⇡|⇡0)

Block coordinates
relaxation:

max
u

� f⇤
1 (u)� "he�u

" , Ke�
v
" i

max
v

� f⇤
2 (v)� "he� v

" , K⇤e�
u
" i (Iv)

(Iu)

Proposition:

ProxKL
f1/"(µ)

def.
= argmin ⌫f1(⌫) + "KL(⌫|µ)

the solutions of (Iu) and (Iv) read:

a =
ProxKL

f1/"(Kb)

Kb
b =

ProxKL
f2/"(K

⇤a)

K⇤a

Dual:

(a, b)
def.
= (e�

u
" , e�

v
" )

max
u,v

� f⇤
1 (u)� f⇤

2 (v)� "he�u
" , Ke�

v
" i

⇡(x, y) = a(x)K(x, y)b(y)



Generalized Sinkhorn

82 Entropic Regularization of Optimal Transport

As shown in [Peyré, 2015, Frogner et al., 2015, Chizat et al., 2017, Karlsson and
Ringh, 2016], Sinkhorn iterations (4.15) can hence be extended to this problem, and
read

u Ω
ProxKL

F (Kv)
Kv

and v Ω
ProxKL

G (KT
u)

K
T

u
, (4.51)

where the proximal operator for the KL divergence is

’ u œ RN

+ , ProxKL

F (u) = argmin
uÕœRN

+

KL(uÕ
|u) + F (uÕ). (4.52)

For some functions F, G it is possible to prove the linear rate of convergence for iter-
ations (4.51), and these schemes can be generalized to arbitrary measures, see [Chizat
et al., 2017] for more details.

Iterations (4.51) are thus interesting in the cases where ProxKL

F and ProxKL

G can be
computed in closed form or very e�ciently. This is in particular the case for separable
functions of the form F (u) =

q
i
Fi(ui) since in this case

ProxKL

F (u) =
1
ProxKL

Fi
(ui)

2

i

Computing each ProxKL

Fi
is usually simple since it is a scalar optimization problem.

Note that, similarly to the initial Sinkhorn algorithm, it is also possible to stabilize the
computation using log-domain computations [Chizat et al., 2017].

This algorithm can be used to approximate the solution to various generalizations
of OT, and in particular unbalanced OT problems of the form (10.7) (see §10.2 and in
particular iterations (10.9)) and gradient flow problems of the form (9.26) (see §9.3).

Remark 4.27 (Duality and Legendre transform). The dual problem to (4.49) reads

max
f,g

≠ F ú(f) ≠ Gú(g) ≠ Á
ÿ

i,j

e
fi+gj ≠Ci,j

Á . (4.53)

so that (u, v) = (ef/Á, eg/Á) are the associated scalings appearing in (4.12). Here,
F ú and Gú are the Fenchel-Legendre conjugate, which are convex functions defined
as

’ f œ Rn, F ú(f) def.= max
aœRn

Èf, aÍ ≠ F (a). (4.54)

The generalized Sinkhorn iterates (4.51) are a special case of Dykstra’s algo-
rithm [Dykstra, 1983, 1985] (extended to Bregman divergence [Bauschke and Lewis,
2000, Censor and Reich, 1998], see also Remark 8.1), and is an alternate maximiza-
tion scheme on the dual problem (4.53).

The formulation (4.49) can be further generalized to more than 2 functions and
more than a single coupling

min
(Ps)S

s=1

ÿ

i,j,s

Cs,i,jPs,i,j ≠ ÁH(Ps) +
ÿ

k

Fk((Ps1m)s, (Ps
T1n)s)
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4.6. Generalized Sinkhorn 81

Proposition 4.8 (Finite Sinkhorn Divergences). The following relationship holds

D(L)
C

(a, b) Æ LÁ

C(a, b).

Proof. Similarly to the proof of Proposition 4.5, we exploit the fact that after even just
one single Sinkhorn iteration, we have, following (4.35) and (4.36), that f

(L) and g
(L)

are such that the matrix with elements exp(≠(f(L)
i

+ g
(L)
j

≠ Ci,j)/Á) has column sum
b and its elements are therefore each upperbounded by 1, which results in the dual
feasibility of (f(L)

i
, g

(L)).

Remark 4.25 (Primal infeasibility of the Sinkhorn iterates). Note that the primal iterates
provided in (4.7) are not primal feasible, since, by definition, these iterates are designed
to satisfy upon convergence marginal constraints. Therefore, it is not valid to consider
ÈC, P

(2L+1)
Í as an approximation of LC(a, b) since P

(2L+1) is not feasible. Using the
rounding scheme of Altschuler et al. [2017] laid out in Remark 4.5 one can however
yield an upper bound on LÁ

C
(a, b) that can, in addition, be conveniently computed

using matrix operations in parallel for several pairs of histograms, in the same fashion
as Sinkhorn’s algorithm.

Remark 4.26 (Non-convexity of finite dual Sinkhorn divergence). Unlike the regularized
expression LÁ

C
in (4.30), the finite Sinkhorn divergence D(L)

C
(a, b) is not, in general, a

convex function of its arguments (this can be easily checked numerically). D(L)
C

(a, b)
is, however, a di�erentiable function which can be di�erentiated using automatic di�er-
entiation techniques (see Remark 9.1.3) with respect to any of its arguments, notably
C, a or b.

4.6 Generalized Sinkhorn

The regularized OT problem (4.2) is a special case of a structured convex optimization
problem of the form

min
P

ÿ

i,j

Ci,jPi,j ≠ ÁH(P) + F (P1m) + G(PT1n). (4.49)

Indeed, defining F = ÿ{a} and G = ÿ{b}, where the indicator function of a closed convex
set C is

ÿC(x) =
I

0 if x œ C,
+Œ otherwise,

(4.50)

one retrieves the hard marginal constraints defining U(a, b). The proof of Proposi-
tion 4.3 carries to this more general problem (4.49), so that the unique solution of (4.49)
also has the form (4.12).


